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Up to now there have been only few numerical calcula-
tions using the CGL equations (see [11] for an example).An upstream differencing numerical scheme is devised for the

double-adiabatic equations which describe a plasma with aniso- Apparently there has been no theoretical work on numeri-
tropic pressure. The Godunov-type method uses an approximate cal methods for these equations.
Riemann solver, which is constructed with an explicit representation The treatment of the MHD equations by an upwind
of the complete eigensystem of the Jacobian matrix of the flux

difference scheme has first been described and applied onvector. A correction term is introduced into the numerical flux which
an unstructured grid by Schmidt and Wegmann [21]. Thisallows switching off the instabilities. One- and three-dimensional

test calculations show that the method works well for stable and approach becomes now more and more appreciated [3, 24,
unstable flows. For the latter the instabilities tend to isotropize the 23, 25, 6, 7, 10, 20]. The scheme of Munz [15] has also been
pressure so that the flow becomes stable. First results of calculations extended to MHD. The method is based on an approximate
for the interaction of the solar wind with a comet show that the

Riemann solver. It can also handle discontinuities such aspressure anisotropies due to the ion pickup modify the plasma flow
shocks. It can be modified by various methods to make itconsiderably. Q 1997 Academic Press

second order accurate in regions where the flow is smooth
(see LeVeque [13] for a survey).

1. INTRODUCTION The upwind difference scheme is particularly attractive
when the complete eigensystem of the Jacobian matrix of

The nucleus of a comet consists of a mixture of ice the flux vector can be calculated explicitly. It has been
and dust. Irradiated by the sun the ice sublimates. Gases shown by Schmidt and Wegmann [21] that then the up-
streaming away from the nucleus form a cloud of neutral stream correction can be calculated in a very simple way.
molecules which by various processes are ionized with a The plan of this paper is as follows: We present the
time scale of about 106 s. The solar wind is a parallel flow double-adiabatic equations. In Section 3 we calculate the
of magnetized plasma consisting mainly of protons and Jacobi matrix of the flux function. From this we get an
electrons. The cometary ions are implanted into the solar explicit representation of the complete eigensystem. For
wind as soon as they are generated. By this pickup of slow comparison we give also the derivation for the ideal MHD
and heavy ions the solar wind is decelerated and heated. equations. The upstream differencing numerical scheme is
A shock transforms the kinetic energy into thermal energy described in Section 5.
which then is used to accelerate the ions into the tail. This For the CGL equations the eigenvalues may become
interaction has since long been successfully described by complex. These complex eigenvalues correspond to physi-
the equations of ideal magnetohydrodynamics (MHD) cal instabilities, namely the mirror and firehose instabili-
with source terms (Schmidt and Wegmann [21, 22]). ties. In case one might choose to suppress the instabilities

The pickup ions at first gyrate around the magnetic field in the CGL equations to obtain equilibrium solutions, a
and so form in velocity space a ring distribution, which method for doing so is described in Section 4. The result
only gradually is transformed by pitch angle scattering into of the calculation may then be interpreted as a background
a shell distribution. This picture has been confirmed by state on which the instabilities evolve. For the purpose of
measurements of the Giotto spacecraft near comet Hal- illustration we report in Section 6 the results of some test
ley [16]. calculations as well as the first results of model calculations

Therefore, the ion pickup has the effect, that the ion for the interaction of the solar wind with a comet.
pressure becomes anisotropic. A plasma with anisotropic
pressure can be described by the double-adiabatic equa- 2. THE DOUBLE-ADIABATIC EQUATIONS
tions derived by Chew, Goldberger, and Low [4] (CGL
equations, for short). The most serious approximation in The plasma is described by the following variables: mass

density r, number density n, an isotropic electron pressurethese equations is the neglect of the heat transport parallel
to the magnetic field. pe with adiabatic index c, the two components p' and pi
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200 RUDOLF WEGMANN

of the ion pressure, the bulk velocity u, and the magnetic The thermal energy is Eth 5 p' 1 Aspi . It corresponds to
an isotropic pressure piso 5 Sdp' 1 Adpi with an effective c 5 Gd.field B. These quantities are connected by the equations

The right-hand sides in Equations (2.1) to (2.6) describe
the addition of new cometary ions into the plasma. Thesen

t
1 div(nu) 5 ṅ (2.1) quantities will be specified later. We use separate equations

for particles and mass density so that the fraction of com-
etary ions in the plasma can be determined.r

t
1 div(ru) 5 ṙ, (2.2)

The induction equation (2.7) ensures that the condition
div B 5 0 is satisfied for all times if it is satisfied initially.
There are several reasons to include the terms proportionalpe

t
1 div(peu) 1 (c 2 1)pediv u 5 ṗe , (2.3)

to div B into the equations. Formally the term in (2.7)
comes from the flux conservation condition (see [17]). Thep'

t
1 div(p'u) 1 p'div'u 5 ṗ' , (2.4) term in (2.6) removes the term proportional to div B which

comes from the formal transformation of the Lorentz force
(1/e)B 3 curl B and the anisotropic pressure force.pi

t
1 div(piu) 1 2pidiviu 5 ṗi , (2.5) It has been noted by Brackbill and Barnes [2] that the

MHD equations without the div B-terms may yield unphys-
ical results when, as a consequence of numerical errors,ru

t
1 div(ruu9) 1 div P 1

1
e

grad
B2

2
(2.6)

the condition div B 5 0 is violated. We will see in the next
section how div B can influence the flow if it is not properly
included into the equations.2

1
e

div(BB9) 1 S1
e

2
pi 2 p'

B2 D B div B 5 q̇,
From the induction equation (2.7) follows the conserva-

tion law for ‘‘magnetic monopoles’’B
t

1 div(Bu9) 2 div(uB9) 1 u div B 5 0. (2.7)
(div B)

t
1 div (udiv B) 5 0. (2.9)

Vectors v and matrices M are denoted by boldface let-
ters. A prime indicates the transpose of a vector. In the This means that the artificial monopoles are passively con-
general case of a complex matrix M the conjugate transpose vected and finally swept out from the domain of calcula-
is M9. By grad u we mean the matrix (grad ux , grad uy , tions [21, 10]. From the conventional form B/t 2
grad uz). Let b :5 B/B be a unit vector in the direction of curl(u 3 B) 5 0 follows (div B)/t 5 0. This means that
the field. Then diviu :5 b9(grad u)b is the part of the monopoles stay where they are generated and errors in
divergence of the flow field parallel to the magnetic field div B can accumulate.
and div'u :5 div u 2 diviu is the perpendicular part. The conservation of the total energy

The pressure tensor

E 5
ru2

2
1

pe

c 2 1
1 p' 1

pi

2
1

B2

2e
(2.10)P 5 (pe 1 p')I 1 (pi 2 p')bb9 (2.8)

is described by the equationis anisotropic. I denotes the 3 3 3 identity matrix. The
divergence of a matrix is formed rowwise, i.e.,

E
t

1 div Sru2

2
1

cpe

c 2 1
1 2p' 1

pi

2
1

B2

e D u

1 div S(u, B)Spi 2 p'

B2 2
1
eD BD (2.11)div 1

r9x

r9y

r9z
2 :5 1div rx

div ry

div rz
2.

2 Spi 2 p'

B2 2
1
eD(u, B)div B 5 Ė.

Equations (2.4) and (2.5) are quite analogous to (2.3).
For ideal MHD the pressure p 5 pi 5 p' is isotropic. ItThe perpendicular and parallel pressures react to a com-

satisfies the same equationpression perpendicular and parallel to the magnetic field
like the pressure of an ideal gas with adiabatic index 2 or 3,
respectively, corresponding to the two degrees of freedom p

t
1 div(pu) 1 (c 2 1)p div u 5 ṗ, (2.12)

across the field and one degree of freedom along the field.
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as the electron pressure. The momentum equation (2.6)
A21 5

1
r

(k(0, 0, 1, 1, 0) 1 bnb(0, 0, 0, 21, 1)), (3.5)simplifies to

A23 5
1
r
S(pi 2 p')bn

B
(I 2 2bb9) 1

1
e

kB9 2
1
e

BnID, (3.6)r u
t

1 div(r uu9) 1 gradSpe 1 p 1
B2

2eD
(2.13) A32 5 Bk9 2 BnI. (3.7)

2
1
e

div(BB9) 1
1
e

B div B 5 q̇.
Let l be an eigenvalue of A with left and right eigenvec-

tors z and s. It is convenient to decompose these vectors
3. EIGENANALYSIS into parts z1 and s1 of dimension 5 and s2 , s3 , z2 , and z3 of

dimension 3, adapted to the block structure (3.3) of the
We can write the system of equations in a more compact matrix A. Then the eigenvalue equation As 5 ls is equiva-

form by combining all physical variables to a vector V with lent to the following system of equations:
11 components:

A12s2 5 ls1 , A21s1 1 A23s3 5 ls2 , A32s2 5 ls3 . (3.8)
V9 :5 (n, r, pe , p' , pi , u9, B9). (3.1)

Similarly, for the left eigenvector z9A 5 lz9 is equivalent to
With the time derivative d/dt :5 /t 1 (u, grad) the equa-
tions assume the form z92A21 5 lz91 , z91A12 1 z93A32 5 lz92 , z92A23 5 lz93 . (3.9)

For l ? 0 one can use the first and the third equationsdV
dt

1 Ax
V
x

1 Ay
V
y

1 Az
V
z

5 V̇ (3.2)
from (3.8) to eliminate s1 , and s3 . An eigenvalue problem
of dimension 3 remains

with 11 3 11 matrices Ax , Ay , Az which depend on the
flow variables V and on the direction of differentiation Ms2 5 l2s2 (3.10)
which in (3.2) is along one of the unit vectors ex , ey , and
ez in the orthogonal coordinate system x, y, z. with the matrix

We can quite generally calculate the matrix A which
occurs for differentiation along a unit vector k. One has M 5 A21A12 1 A23A32 5 b2

n(a2 1 c2
' 2 c2

i )I
to put k 5 ex , ey , or ez in (3.3)–(3.7) to get the matrices Ax ,

1 (a2 1 c2
e 1 2c2

')kk9 2 bn(a2 1 c2
')(kb9 1 bk9) (3.11)Ay , and Az of Eq. (3.2). The matrix A has block structure

1 b2
n(4c2

i 2 c2
')bb9

with the abbreviationsA 5 1
0 A12 0

A21 0 A23

0 A32 0
2 (3.3)

a2 5
B2

er
, c2

e 5
cpe

r
, c2

' 5
p'

r
, c2

i 5
pi

r
. (3.12)

with a 5 3 3 matrix A12 , a 3 3 5 matrix A21 , and 3 3 3
matrices A23 and A32 . The 0 denotes matrices of appro- Similarly, one can use the first and the third equations
priate order with zero elements only. The blocks can explic- from (3.9) to eliminate z1 , and z3 . This leads to the equation
itly be represented in terms of the unit vectors k and b in
the following way. We use the abbreviations bn :5 (b, k)

z92M 5 l2z92 . (3.13)and Bn :5 (B, k):

It follows from (3.11) that M is a multiple of the identity
matrix plus a matrix of rank 2 spanned by the vectors b
and k. The matrix M is symmetric. Therefore, the eigenval-
ues l2 of M are real. Left and right eigenvectors of M

A12 51
n

r

cpe

2p'

pi

2 k9 1 bn1
0

0

0

2p'

2pi

2 b9, (3.4) coincide; i.e., one can choose z2 5 s2 .
Since the eigenvalues are independent of the coordinate

system we can use a representation of the matrix M in a
convenient basis. To this aim we rotate the coordinate
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system so that b9 5 (0, 1, 0) and k9 5 (sin u, cos u, 0). For the eigenvalues l ? 0 of A the complete eigenvectors
can be represented byThen bn 5 cos u and

M 5 1
a11 a12 0

a21 a22 0

0 0 a33
2 (3.14)

s 51
1
l

A12

I

1
l

A32
2 s2 , z9 5 s92 S1

l
A21 , I,

1
l

A23D (3.18)

with the elements

a11 5 a2 1 c2
e sin2 u 1 c2

'(1 1 sin2 u) 2 c2
i cos2 u,

in terms of the already determined eigenvector s2 of M.
a12 5 a21 5 (c2

e 1 c2
') sin u cos u,

(3.15)
This is a consequence of (3.8) and (3.9).

If there are l eigenvalues l2 ? 0 of M, then l is either
a22 5 (3c2

i 1 c2
e) cos2 u, 1, 2, or 3 as we have seen in the discussion above. The

formula (3.18) gives 2l linearly independent eigenvectorsa33 5 (a 1 c2
' 2 c2

i ) cos2 u.
for the 2l nonzero eigenvalues 6l of A.

For the eigenvalue l 5 0 we insert the Ansatz s9 5This matrix has the eigenvalues
(s91 , 0, s93) into the eigenvalue equation. The system of
three equations

l2
1,2 5 As(a2 1 c2

e 1 c2
'(1 1 sin2 u) 1 2c2

i cos2 u

A21s1 1 A23s3 5 0 (3.19)6 ((a2 1 c2
'(1 1 sin2 u) 2 4c2

i cos2 u (3.16)

1 c2
e(sin2 u 2 cos2 u))2

for the eight components of s1 and s3 has at least five
linearly independent solutions. These yield five linearly1 4(c2

' 1 c2
e)2 sin2 u cos2 u)1/2),

independent eigenvectors of the form s9 5 (s91 , 0, s93) for
l2

3 5 (a2 1 c2
' 2 c2

i )cos2 u. (3.17) the eigenvalue l 5 0. Therefore, l 5 0 is an eigenvalue
of the matrix A with geometric multiplicity at least five.

If all eigenvalues of M are nonzero we get in this wayTo be specific, l2
1 is defined by (3.16) with the positive sign

a complete system of 11 left and 11 right eigenvectors ofand l2
2 with the negative sign. These eigenvalues agree

A. Hence the matrix A is diagonalizable. One can choosewith the previously calculated propagation speeds [14].
the eigenvectors biorthogonal, i.e., z9msj 5 0 for m ? j.The eigenvectors of the matrix M can be calculated in
Then the spectral representationthe following way:

In the general case when cos u sin u ? 0 the vectors b
and k are neither parallel nor perpendicular. If a12 ? 0

A 5 O11

j51
lj

sjz9j

z9j sj

(3.20)then l2
1 ? l2

2 and for l2 5 l2
1 and l2 5 l2

2 an eigenvector
of M in the representation (3.14) is given by s92 5 (2a12 ,
a11 2 l2, 0). One can write s2 in terms of the given vectors

is valid. In view of (3.18) the denominator in (3.20) is fors2 5 c1k 1 c2b with c1 5 2a12/sin u, c2 5 a11 2 l2 1 a12 eigenvalues l ? 0 equal tocot u. If a12 5 0 the eigenvectors for l2
1 and l2

2 are simply
(1, 0, 0)9 5 k/sin u 2 cot ub and (0, 1, 0)9 5 b. An eigenvec-
tor for l2

3 is s2 5 k 3 b which is nonzero since k and b are z9s 5 s92 S 1
l2 (A21A12 1 A23A32) 1 IDs2

(3.21)
not parallel.

If cos u sin u 5 0 then the matrix M is diagonal.
In the special case cos u 5 0 the vectors k and b are 5 s92 S 1

l2 M 1 IDs2 5 2is2i2.
orthogonal. Then all elements of M vanish except a11 5
a2 1 c2

e 1 2c2
' . This is the eigenvalue l2

1 which has eigenvec-
tor k. Hence the scalar product z9s is twice the square of the

middle part s2 .In the other case sin u 5 0 the vectors k and b are
parallel. The matrix elements are a11 5 a33 5 a2 1 c2

' 2 If some eigenvalues of M are zero a degeneracy can
occur as in ideal MHD. Since only the nonzero eigenvaluesc2

i and a22 5 3c2
i 1 c2

e . The eigenvalue l2
2 5 a22 has eigenvec-

tor b. The eigenvectors for the eigenvalues l2
1 5 l2

3 5 a11 l contribute to the spectral representation (3.20) we do
not really need the eigenvectors for the eigenvalue l 5 0.are perpendicular to b.
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We recall for comparison the situation for ideal MHD. depend only on the variables x and t, the flux conservation
implies Bx 5 const. This can be used to eliminate Bx fromHere we combine all physical variables to a vector V with

10 components the system of equations. This is the standard approach to
calculate MHD waves and the eigensystem of the Jacobian
matrix A [12]. One-dimensional upwind schemes [3, 24, 6,V9 :5 (n, r, pe , p, u9 B9). (3.22)
19] used this approach. Also multidimensional schemes
were based on the eigensystem for the reduced equationsIn this case the pertaining matrix A has order 10. It has
in combination with operator splitting [25, 7, 20], althoughthe same block structure as shown in (3.3). But now A12

there is no equivalent for the condition Bx 5 const.is a 4 3 3 matrix and A21 a 3 3 4 matrix,
The complete eigensystem for the three-dimensional Ja-

cobian was used 1980 by Schmidt and Wegmann [21] and
again by Gombosi et al. [10]. These authors emphasized
the importance of including div B in a proper way into the
equations in order to minimize the damage done by theA12 51

n

r

cpe

cp
2 k9, A21 5

1
r

k(0, 0, 1, 1). (3.23)
numerical monopoles. If the terms containing div B are
omitted from Eq. (2.7) and (2.13) then the Jacobian matrix
Ã pertaining to this modified system of equations can be
written in the form

The 3 3 3 matrices A23 and A32 are

A23 5
1

er
(kB9 2 BnI), A32 5 Bk9 2 BnI. (3.24)

Ã 5 A 2 1
0

B

u
2 (0, 0, k9) (3.29)

The eigenvectors are split in a similar way as before into
parts of dimension 4 and 3. Then the eigenvalue problem
reduces to a problem (3.10) with a matrix M of order 3,

with the matrix A as before.which in this case has the form
The vector s̃ defined by s̃9 :5 (0, 0, k9) is a right and a

left eigenvector of A for the eigenvalue 0. Reduced toM 5 b2
na2I 1 (a2 1 c2

e 1 c2)kk9 2 a2bn(kb9 1 bk9) (3.25)
one spatial dimension this vector collects the contributions
from Bx/x 5 div B. The properties s̃9A 5 0 and As̃ 5with the abbreviations (3.12) and c2 :5 cp/r.
0 ensure that as far as possible no div B is generated andWe represent the matrix M in the same special coordi-
div B has no effect.nate system as before, where b9 5 (0, 1, 0) and k9 5

On the other hand, s̃9Ã 5 2(u, k)s̃9 means that div B(sin u, cos u, 0). Using bn 5 cos u we get the representation
is convected back with velocity (u, k) in a Lagrangian(3.14) with the elements
system; i.e., it stays where it is in an Eulerian grid. The
equationa11 5 a2 1 (c2

e 1 c2)sin2 u,

a12 5 a21 5 (c2
e 1 c2)sin u cos u, (3.26)

a22 5 (c2 1 c2
e)cos2 u, a33 5 a2 cos2 u.

Ãs̃ 5 21
0

B

u
2 (3.30)

This matrix has the eigenvalues

l2
1,2 5 As(a2 1 c2 1 c2

e
means that div B really does something; namely it gener-

6 (a4 1 (c2 1 c2
e)2 (3.27) ates velocity, i.e., exerts forces on the flow and generates

a new field. Since, in addition, div B is not convected away1 2a2(c2 1 c2
e)(cos2 u 2 sin2 u))1/2),

by these equations it can become an inexhaustible source
l2

3 5 a2 cos2 u. (3.28) of nuisance.
A nonzero div B is a manifestation of the numerical

error. It depends on the situation whether or not this formThis yields the well-known magnetosonic speeds and the
Alfven velocity. One can calculate the eigenvectors in a of numerical error is more dangerous than other manifesta-

tions. If need be, div B can be removed by a projectionquite similar way as above for the CGL equations.
Reduced to one spatial dimension, where all quantities method [2].
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4. INSTABILITIES
l2

2 , 0 for 2
A1

A2
, tan2 u , y. (4.6)

The matrix M is symmetric. Therefore, the eigenvalues
l2 are real. Hence the eigenvalues l are real or imaginary, Consider the one-dimensional inhomogeneous linear
depending on whether l2 $ 0 or l2 , 0. system of differential equations

We get immediately from (3.17) that l2
3 is negative if

and only if cos2 u . 0 and
U
t

1 A
U
x

5 g(x) (4.7)
c2

i 2 c2
' . a2. (4.1)

with a real matrix A and the vector U of m variables.
It follows from (3.16) that l2

1 is nonnegative. The sign Assume that A has eigenvalues lj and a full system of
of l2

2 depends on the sign of the determinant D0 :5 a11a22 2 eigenvectors sj and zj which satisfy the biorthogonality rela-
a2

12 . Using (3.15) D0 can be written in the form D0 5 tion z9j sk 5 djk . Then A has the spectral representation
D1 cos2 u with

A 5 O ljsjz9j . (4.8)D1 5 (c2
' 2 c2

i 1 a2)(3c2
i 1 c2

e)cos2 u

1 (3c2
i (c2

' 1 c2
e) 1 (c2

' 1 a2)(3c2
i 1 c2

e)
(4.2)

If an eigenvalue l is complex then the corresponding
eigenvectors s and z are also complex. We denote by2 c2

'(c2
' 1 c2

e))sin2 u
Re s the vector whose components are the real parts of

5 A1 cos2 u 1 A2 sin2 u. the components of the vector s. The vector Im s is defined
in a similar way. Note that (Im z)9 5 2Im z9, since the

The coefficient A1 of cos2 u is negative if and only if prime involves also complex conjugation.
(4.1) is satisfied. The coefficient A2 of sin2 u is negative if The matrix A is real. Therefore, one can replace the
and only if right-hand side of (4.8) by its real part. This leads to a

decomposition A 5 As 1 Au with the matrices

c2
i 2 c2

' , 22c2
i 2

(c2
' 1 a2)(3c2

i 1 c2
e)

c2
' 1 c2

e
(4.3)

As 5 O Re ljRe(sjz9j )

5 O Re lj(Re sjRe z9j 1 Im sj(Im zj)9),
(4.9)

holds, i.e., if the perpendicular pressure exceeds the paral-
lel pressure by a sufficiently large amount.

Au 5 2 O Im ljIm(sjz9j )The conditions (4.1) and (4.3) are mutually exclusive.
Therefore, at most one of the coefficients A1 or A2 can

5 O Im lj(Re sj(Im zj)9 2 Im sjRe z9j ).become negative. Hence D1 , 0 can occur only in a certain
u-interval which is given by

For real eigenvalues l the eigenvectors can be chosen
as real vectors. Complex eigenvalues l occur in complex
conjugate pairs l, l. The corresponding eigenvectors can
also be chosen as complex conjugate. It follows from the

tan2 u , 2
A1

A2
for A1 , 0,

tan2 u . 2
A1

A2
for A2 , 0.

(4.4)
biorthogonality condition that

Re z9Re s 5 (Im z)9Im s 5
1
2

,

(4.10)
The following three cases can occur:

Case 1. A1 and A2 are both nonnegative. Then all Re z9Im s 5 (Im z)9Re s 5 0.
l2 $ 0 for all angles u.

This implies that the system zj and sj remains a biorthogonalCase 2. A1 , 0 and A2 $ 0. Then
system if the conjugate complex pairs z, z and s, s are
replaced by the pairs Ï2Re z, Ï2Im z and Ï2Re s,l2

3 , 0 for tan2 u , y,

(4.5) Ï2Im s. It follows that the definition (4.9) of the matrices
As and Au gives already the spectral representation. Eachl2

2 , 0 for tan2 u , 2
A1

A2
.

complex conjugate pair gives twice the same contribution
to the sum. This yields the factor 2 which is needed for
the normalization of the real and imaginary parts of theCase 3. A1 $ 0 and A2 , 0. Then
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vectors. It turns out that As has only real eigenvalues growth of the instabilities. The pressure becomes more
isotropic so that the flow is stabilized.Re lj , while Au has besides the trivial eigenvalue l 5 0,

only purely imaginary eigenvalues i Im lj . The eigenvectors In reality the plasma is isotropized, not by the macro-
scopic instabilities as described by the CGL equations, butare the real and imaginary parts of the eigenvectors of the

original matrix A. rather by microinstabilities. Plasma theory predicts the
onset of the mirror instability earlier than condition (4.3).One can represent the parts of the matrix A also in the

following way: In numerical calculations the fastest growing mode is
determined by the grid size and by the numerical method
used (see Section 6 for examples). Therefore, one cannotAs 5 O Re lj sjz9j , Au 5 i O Im lj sjz9j . (4.11)
really solve the equations for unstable flow numerically
except in cases with very carefully chosen smooth initial

Since complex eigenvalues and eigenvectors occur only in conditions.
conjugate pairs the imaginary parts of sjz9j cancel in the In view of these objections it may be desirable to sup-
first sum of (4.11) while the real parts cancel in the second. press the instabilities in the CGL equations and to include,

This decomposition of the matrix A gives rise to a de- instead, the effect of the microinstabilities in a phenomeno-
composition of the differential equation. If Us and Uu are logical way.
two vector functions which solve the system of equations

5. DISCRETIZATION
Us

t
1 As

Us

x
5 g(x),

Uu

t
1 A

Uu

x
5 2Au

Us

x
(4.12) We introduce in addition to the vector V the vector

W :5 (n, r, pe , p' , pi , ru9, B9) where the velocity is replaced
by the momentum. Equations (2.1)–(2.7) can then be writ-

then U 5 Us 1 Uu solves Eq. (4.7). The part Us is governed ten in compact form,
by a standard hyperbolic system and remains stable. The
second part Uu describes instabilities which are excited by
the right-hand side of the second equation in (4.12). W

t
1 div F 1 Cx(V)

V
x

1 Cy(V)
V
y

1 Cz(V)
V
z

5 Ẇ.
This simple decomposition into a stable background Us

(5.1)and unstable disturbances Uu seems to be possible only
for equations in one space dimension like (4.7). One can

The conservative part of the equations is expressed as theformally apply the same decomposition to each of the
divergence of an 11 3 3 flux matrixmatrices Ax , Ay , and Az in the three-dimensional equation

(3.2) but this does, in general, not remove all instabilities.
The CGL equations describe physical instabilities,

namely the mirror and the firehose instabilities. Neverthe-
F 5 1

F1

F2

F3
2 (5.2)less the equations may not always be physically meaningful

for unstable flows for the following reasons.
First, the shortest waves grow fastest. This leads to an

immediate breakdown unless the initial data are very which is built up by a 5 3 3 matrix F1 and 3 3 3 matrices
smooth. The initial value problem is no longer well posed. F2 and F3 of the form
This can be seen most easily by the prototype of an unstable
system of equations,

v
t

1
u
x

5 0,
u
t

2
v
x

5 0 (4.13)
F1 51

n

r

pe

p'

pi

2 u9, F3 5 Bu9 2 uB9,

(5.3)
for two functions u and v. These are simply the Cauchy–
Riemann equations for the real and imaginary parts of an
analytic function. Equations (4.13) are elliptic and the ini-
tial value problem is not well posed and, therefore, not F2 5 ruu9 1 P 1

B2

2e
I 2

1
e

BB9.
well suited to describe a physical situation. The pair of
equations pertaining to a conjugate complex pair of eigen-
values of the matrix A can be transformed to the form The columns of F are the flux vectors Fx, Fy, Fz.

The last terms in (5.1) represent the nonconservative(4.13) [8].
The nonlinear terms in the CGL equations limit the terms. Each of them is written as the product of a matrix
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C and a derivative of V. The matrix C depends on the dV
dt

1 A
V
x

5 V̇ (5.9)direction k of differentiation. The matrices Cx , Cy , and Cz

are obtained as special cases for k 5 ex , ey , and ez from
the following general representation. The block structure for the vector V. The corresponding linearized version of
of C is similar to that of A, namely, the equations (5.7) for the vector W can be written in

the form

dW
dt

1 HA
V
x

5 Ẇ (5.10)C 5 1
0 C12 0

0 0 C23

0 0 C33
2 (5.4)

with the matrix
with the blocks

H 5
W
V

5 1
I 0 0

H21 rI 0

0 0 I
2 (5.11)

C12 51
0

0

(c 2 1)pe

p'

0

2 k9 1 bn1
0

0

0

2p'

2pi

2 b9, (5.5)
which has the same block structure as A. The only nontriv-
ial offdiagonal block is H21 5 u(0, 1, 0, 0, 0).

We have calculated in Section 3 the eigensystem of the
matrix A which occurs in the formulation (3.2) of the
equations in a comoving (Lagrangian) coordinate system.C23 5 S1

e
2

pi 2 p'

B2 D Bk9, C33 5 uk9. (5.6)
In a fixed (Eulerian) system the derivative dV/dt in (3.2)
is replaced by V/t 1 (u, grad)V. This has the effect that
in (3.3) A is replaced by A 1 unI with un 5 (u, k) and theWe consider first a one-dimensional flow where all vari-
identity matrix I. The matrices A and A 1 unI have theables depend only on t and x. Then (5.1) reduces to
same right and left eigenvectors sj and zj . Only the eigenval-
ues lj are Doppler shifted to lj 1 un . This equivalence isW

t
1

Fx(V)
x

1 Cx(V)
V
x

5 Ẇ. (5.7) used in the following derivation of a difference scheme for
Eq. (5.7) in Eulerian coordinates.

For the calculation of the fluxes Fn
j11/2 we proceed asLet Dx be the grid size and Dt the time step. We assume

follows. We assume that ux , A, Cx , and H are constant inthat Vn
j are the values of V at the grid points xj 5 jDx, j 5

a neighborhood of xj11/2 ; i.e., Fx(V) 5 (uxI 1 A 2 Cx)V1, ..., N, at time tn 5 nDt. It is useful to introduce interfaces
and W 5 HV. Provisional values Ṽ at xj11/2 are obtainedat the positions xj11/2 5 ( j 1 As)Dx, j 5 0, 1, ..., N. The
from the condition that for each characteristic variable thevalues at time tn11 are calculated by the formula
value is taken from the adjacent grid cell which is upstream
along the pertaining characteristic. This upwinding strategy
was recommended by Courant et al. [5]. It leads to theWn11

j 5 Wn
j 1 DtẆj 2

Dt
Dx SFx,n

j11/2 2 Fx,n
j21/2

(5.8)
system of equations

1 Cx(Vn
j )

Vn
j11 2 Vn

j21

2 D.
z9j11/2,lṼ 5Hz9

j11/2,lVj if ux 1 lj11/2,l . 0,

z9
j11/2,lVj11 if ux 1 lj11/2,l , 0,

(5.12)

Each term on the right side is well defined, except the
fluxes Fx,n

j61/2 at the interfaces. for l 5 1, ..., 11. We multiply (5.12) from the left by (ux 1
To calculate these fluxes we proceed as follows. First lj11/2,l)sj11/2,l and add. This gives

we define values on the interfaces Vj11/2 5 (Vn
j 1

Vn
j11)/2 and calculate the Jacobian matrix A as described (uxI 1 A)Ṽ 5 (uxI 1 A)As(Vj 1 Vj11)

(5.13)in Section 3 for these values of Vj11/2 with the normal k 5
(1, 0, 0)9. The eigenvalues and eigenvectors are lj11/2,l , sj11/ 2 As O

l
uux 1 lj11/2,lusj11/2,lz9j11/2,l(Vj11 2 Vj).

2,l , zj11/2,l , l 5 1, ..., 11. We assume that these vectors are
biorthogonal and normalized.

The matrix A occurs in the differential equations (3.2) The left-hand side of (5.13) should be taken as the flux
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on the interface for the linear equations (5.10), using the rection also by considering the nonlinear Riemann prob-
lem. The resulting method, first introduced by Godunovupstream differencing method. We carry this over to the

nonlinear equations (5.7) by replacing the first term in [9], has very good performance at shocks. It has no counter-
part for nonconservative equations.(5.13) as far as possible by the corresponding nonlinear

fluxes. This can be done only for the part Fx/V of uxI 1 Formula (5.8) can easily be generalized for the system
of Eq. (5.1) on a three-dimensional rectangular nonequi-A. The nonconservative part Cx must be retained and oc-

curs explicitly in (5.8). The first term in (5.13) alone would distant grid.
Let xj11/2 , yk11/2 , zl11/2 , j 5 0, 1, ..., nx , k 5 0, 1, ..., ny ,result in an unstable central difference scheme. The last

term transforms it to a stable upwind scheme. This term l 5 0, 1, ..., nz be the coordinates of planes which subdivide
a certain volume into nx 3 ny 3 nz cells Tjkl . For each cellis called the upstream correction.

This approach can be used also when complex eigenval- there are at time tn 5 nDt values of the variables Vn
jkl . The

values at time tn11 are calculated as in (5.8),ues occur. One has to replace the eigenvalues by the
real parts.

Wn11
jkl 5 Wn

jkl 1 DtẆjklThis leads finally to the formula for the fluxes on the in-
terfaces:

2
Dt
Dxj

SFx
j11/2kl 2 Fx

j21/2kl 1 Cx(Vn
jkl)

Vj11kl 2 Vj21kl

2 DFx,n
j11/2 5 As(Fx(Vn

j ) 1 Fx(Vn
j11))

2 Asuux, j11/2u(Wn
j11 2 Wn

j )
2

Dt
Dyk

SFy
jk11/2l 2 Fy

jk21/2l 1 Cy(Vn
jkl)

Vjk11l 2 Vjk21l

2 D
2 AsH O

l
(uRe lj11/2,l 1 ux, j11/2u (5.14)

2
Dt
Dzl

SFz
jkl11/2 2 Fz

jkl21/2 1 Cz(Vn
jkl)

Vjkl11 2 Vjkl21

2 D,
2 uux, j,11/2u)Re(sj11/2,lz9j11/2,l)(Vn

j11 2 Vn
j )

(5.15)
1 AsH O

l
Im lj11/2,lIm(sj11/2,lz9j11/2,l)(Vn

j11 1 Vn
j ).

with Dxj 5 xj11/2 2 xj21/2 and similar for the other coordi-
nates. The fluxes on the interfaces are calculated in a simi-The first term in (5.14) accounts for the conservative part
lar way as in the one-dimensional case. Formula (5.14) canof the flux. The second term makes the upstream correction
be generalized. For instance, the flux Fx

j1(1/2)kl on an inter-for all waves which have l 5 0, i.e., mainly for the advec-
face is the mean of the fluxes in the adjacent cells calculatedtion. The third part incorporates the upstream correction
from Vjkl and Vj11kl with an upstream and instability correc-for all waves with speed different from the flow speed.
tion which is determined with the eigensystem of the matrixThe last term finally removes the contribution of the term
Ax calculated with the mean value of Vjkl and Vj11kl andAuV/x (see (4.9)) from the spatial difference term. We
the normal k 5 (1, 0, 0)9.call this term the instability correction. This term is artificial

By (5.8) the state Vn11 at time tn11 is calculated from theand optional. When this term is included the difference
state Vn by the application of an operator Lx . This operatormethod is suitable to calculate the stable part of the solu-
can be studied for Eq. (5.7) in the case of an initial statetion as discussed in Section 4. Note that the sums in (5.14)
V which is a constant steady state V0 plus a small distur-can be confined to those l for which lj11/2,l is different
bance V1 . We consider Eq. (5.7) without source terms andfrom zero. Therefore, one needs the eigenvectors only for
with periodic boundary conditions.nonzero eigenvalues.

We use the abbreviation n 5 Dt/Dx. With the spectralWe have retained in (5.10) the spatial derivative of V
representation of the Jacobi matrix of the undisturbedinstead of W. This has the advantage that we can use for
state V0 ,the calculation of the upstream correction the differences

in V and not in W. Therefore, the left eigenvectors of the
A 5 A(V0) 5 O

l
llslz9l , (5.16)matrix A can be used without modifications. Only the right

eigenvectors of A have to be multiplied by the matrix H.
For the linear equations (5.9) one would get the same

and Fourier analysis the initial state at grid point xj canresult as in (5.13) by considering the Riemann problem
be written aswith Vj and Vj11 as left and right states and taking on the

interface the constant value Ṽ which develops as a result
of the resolution of the discontinuity for t . 0 at xj11/2 . V0

j 5 O
k,l

aklsl exp Si
jk2f

N D. (5.17)
Therefore, one can say that the method using (5.14) is
based on an approximate Riemann solver [21, 18]. For
conservation laws one can incorporate the upstream cor- The state after one time step is then
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TABLE I
V1

j 5 O
k,l

fklaklsl exp Si
jk2f

N D. (5.18)
Parameters for One-Dimensional Test Calculations

Model 1 2 3 4
The amplification factors fkl depend on the method applied.
If only the uncorrected fluxes are applied, i.e., the first n 1 1 1 1

r 1 1 1 1term in (5.14), then
pe 1 1 1 1
p' 1 1 1 10
pi 1 5 5 .5fkl 5 1 1 nIm ll sin

k2f
N

2 in(Re ll 1 ux)sin
k2f
N

. (5.19)
ux 1 1 1 1
uy .2 .2 .2 .2
uz 0 0 0 0For each fixed l these points are on a straight line segment
Bx 3.5 3.5 5 3.5which is symmetric with respect to the point 1.
By 3.5 3.5 1 3.5With upstream correction the amplification factors are Bz 0 0 0 0
Dt .3 .25 .15 .15
l2

1 4.58 8.58 16.00 23.5
fkl 5 1 1 nIm ll sin

k2f
N

2 in(Re ll 1 ux)sin
k2f
N

(5.20)
l2

2 1.54 1.51 21.64 2.09
l2

3 .97 21.02 21.85 .44

2 nuRe ll 1 uxuS1 2 cos
k2f
N D.

the grid unimpeded. The parameters of the constant state
If ll is real this is a circle with radius nuRe ll 1 uxu. This for the four models are listed in Table I. We use CGS
circle is symmetric with respect to the real axis and passes units and put c 5 Gd and e 5 4f.
through the point 1. It is inside the unit circle if and only if The flow in model 1 is stable since the pressure is iso-

tropic. In model 2 the parallel pressure dominates so much
nuRe ll 1 uxu , 1. (5.21) that condition (4.1) is satisfied and the firehose instabil-

ity occurs.
This is the well-known Courant–Friedrichs–Lewy condi- If the angle u between field and wave vector is less than
tion for stability. 328 then also l2

2 becomes negative. This occurs in the con-
If ll is complex then (5.20) describes an ellipse which figuration of model 3. In model 4 the perpendicular pres-

passes through 1 but is not tangent to the unit circle. There- sure is much larger than the parallel pressure so that the
fore, the magnitude of fkl can exceed 1. condition (4.3) is satisfied. The mirror instability occurs

If in addition the instability correction is applied, the for u . 378. This is the case for the given field orientation.
amplification factors The amplification factors for these models are shown in

Fig. 1. For the stable model 1 all waves are damped. In
the last three models amplification factors of magnitudefkl 5 1 2 in(Re ll 1 ux)sin

k2f
N

(5.22) larger than 1 occur if only upstream correction is applied.
This implies that there are growing modes. If instability

2 nuRe ll 1 uxuS1 2 cos
k2f
N D correction is implemented the amplification factors for the

unstable modes are changed and coincide with those of
convection (the dashed lines in Fig. 1). Then all amplifica-

lie on the same circle as in the case of real ll described tion factors have magnitude less than or equal to 1.
before. An indicator for convergence is the L1 norm dn of the

change Dn :5 Vn 2 Vn21 in the nth time step. For model
6. NUMERICAL EXPERIMENTS AND RESULTS 1 dn decreases monotonically and the sequence Vn con-

verges to the underlying constant state. For the other mod-
(a) One-dimensional calculations

els in calculations without instability corrections the norm
dn of the change first increases then also decreases mono-First we calculate a one-dimensional flow where all vari-

ables depend only on the x-coordinate. We treat several tonically and the Vn converges to a constant state. But this
final state is different from the initial constant state. Themodel situations where the different types of instabilities

occur. As initial conditions we use a constant state with a difference is only in the pressures which are changed to
p' 5 1.25, pi 5 3.28 in model 2, to p' 5 1.25, pi 5 3.28 insmall random disturbance. The calculations are done on a

grid with 30 points and gridsize Dx 5 1. Periodic boundary model 3, and to pe 5 1.13, p' 5 7.82, pi 5 3.01 in model
4. Hence the instability effects an isotropization whichconditions are applied so that the waves can travel around
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FIG. 1. The amplification factors for the different waves and the model parameters listed in Table I for the method with upstream correction
only. Solid line for waves with l ? 0 and dashed for convection (l 5 0). The triangles mark for waves with Re l . 0 or Im l . 0 the points which
correspond to waves on the grid.

stabilizes the flow. When this change in the state occurs the With instability correction, dn decreases on the average
with small oscillations. The solution converges to a con-time evolution switches from divergence to convergence.

Figure 2 shows the L1 norm of pn
' 2 pn21

' and the average stant state which coincides with the undisturbed initial
state.value of the pressure components pi and p' in each time

step. It is interesting to follow the transition to a new state
in more detail. We calculate in model 3 a sine wave corre-
sponding to the eigenvalue l1 on a grid with 100 points
for 1500 timesteps. Although this wave is stable it generates
via the nonlinear terms waves corresponding to the eigen-
value l2 . These waves are unstable. If no instability correc-
tion is made these waves grow linearly. After the first
200 timesteps they grow much faster since they are more
efficiently amplified by the original wave, whose amplitude
decreases. For a short time a sort of white noise occurs,
from which a new configuration emerges with a new back-
ground state. The pressures have changed to p' 5 1.31, pi 5
3.04. This state is stable. In Fig. 3 we show the evolution of
the perpendicular pressure with time on the grid. The most
conspicuous feature is finally a sawtooth discontinuity
which moves with the fluid.

In Fig. 4 we show the magnitude of the first Fourier
coefficients of the perpendicular pressure for the 1500
timesteps. The coefficient with index 0 measures the aver-
age value. It changes around timestep 300 from 1 to 1.31.

FIG. 2. Top panel: The logarithm of the L1 norm of pn
' 2 pn21

' in The coefficient with index 1 measures the original sinetime step n. Bottom panel: The average values of p' and pi . The results
wave. The waves with shorter wavelength are excited andare from calculations for model 3 with instability correction (dotted line)

and without (solid line). grow so that they attain the same amplitude as the original
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FIG. 3. The values of the perpendicular pressure p'(t, x). The ordinate denotes x. The curves are shifted. Each line shows p'(tn , x) (arbitrary
units) at a certain time step tn with n labelled by the abscissa. The straight lines starting at n 5 0 and n 5 1000 mark the propagation of the original
wave and the final convected sawtooth.

FIG. 4. Magnitude of the Fourier coefficients of p' as a function of the time step (abscissa): (a) The coefficient with index 0 measures the
average value (linear scale). (b) The coefficients with index 1 (solid), 2 (dotted), 3 (dashed), and 4 (dash-dotted) in logarithmic scale.
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FIG. 5. The same as Fig. 3 but for a calculation with instability correction.

wave. In this way a sort of white noise is generated. After to the one-dimensional analysis the complete operator
may well amplify waves. The three operators do notthe transition to the new state the waves survive. But they

are now more coherent and combine to a sawtooth commute. Therefore, the damping does not hold with
respect to a common basis system. The instabilities de-function.
pend in a crucial way on the angle to the magneticIf the instability correction is implemented the original
field. Therefore, the instability correction in general doeswave remains undisturbed during the whole calculation
not help.(see Fig. 5). It is only damped due to the numerical diffu-

sion. Shorter waves are excited by the nonlinear terms.
(c) The CometBut their amplitude remains well below that of the original

wave (see Fig. 6). For the cometary model one has to provide the source
terms on the right-hand side of (2.1) to (2.6). The nucleus

(b) Three-Dimensional Calculations
of the comet releases G particles per second which stream
radially away with a velocity w. The mean mass of a com-In three dimensions the situation is more complicated
etary particle is mC . It is ionized with a rate s. The densityfor several reasons. The spatial differential operator is
nn of neutral particles depends only on the distance r torepresented as the sum of three one-dimensional difference
the nucleusoperators. Even if each of these damps all waves according

FIG. 6. The same as Fig. 4b but for a calculation with instability correction.
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FIG. 7. The values along the sun–comet axis for different values of tiso 5 1 (solid line), 300 (dotted), 1000 (dashed), and 1800 s (dashed-dotted).
The abscissa shows the distance z (100,000 km): (a) mass-density (logarithm) (g/cm3); (b) ion density (logarithm) (cm23); (c) perpendicular pressure
(1029 dyn/cm2); (d) parallel pressure (1029 dyn/cm2), (e) velocity (km/s); (f) magnetic field (1025 Gs).

account by an exponential decay of the anisotropy with a
nn 5

G
4fwr2 exp S2

rs

wD. (6.1) time scale tiso . In each time step we replace p' , pi by

(1 2 b)p' 1 bpiso , (1 2 b)pi 1 bpiso (6.3)The source terms are proportional to the neutral density

with b 5 min(1, Dt/tiso) and the isotropic pressure piso 5ṅ 5 snn , ṙ 5 mCṅ, q̇ 5 ṙw,
(6.2) Sdp' 1 Adpi .

ṗ' 5 Asṙ(u' 2 w')2, ṗi 5 ṙ(ui 2 wi)2. We calculate on a nonequidistant grid with 14 3 14 3
46 grid points which cover the range 0 # x, y # 300,000
km, 2300,000 # z #700,000 km. The best resolution ofThe kinetic energy of the new ions in the plasma rest frame

contributes to the thermal energy of the plasma. The part 8000 km is near the nucleus. At x 5 0 and y 5 0 we apply
symmetry boundary conditions, at z 5 2300,000 km theperpendicular to the field is added to the perpendicular

pressure, the parallel part to the parallel pressure. The boundary values are solar wind data. At all other bound-
aries gradient zero is assumed.kinetic energy must be multiplied by the factor c 2 1 which

is 1 for p' and 2 for pi . This gives the source terms in (6.2). We calculate for different values of tiso 5 1, 300, 1000,
and 1800 s. The flow is everywhere stable for the smallFor this mainly illustrative calculation we put ṗe 5 0.

We calculate with the following parameters for the values of tiso . For tiso 5 1800 mirror instability occurs in a
region close to the axis at a distance of about 100,000comet G 5 1029s21, w 5 1 km/s, mC 5 20 atomic mass

units (amu), s 5 1026s21. We start the calculation from a km in front of the nucleus. Nevertheless this model also
approaches a steady state. We discuss in the following theconstant state equal to the solar wind condition n 5 5

cm23, r 5 5 amu/cm3, u 5 (0, 0, 400) km/s, B 5 (5 1025, state after 6 h real time which is already close to stationary.
Figure 7 shows the values along the sun–comet axis.0, 0) Gs, pe 5 1.73 10210 dyn/cm2, p' 5 pi 5 6.9 10211

dyn/cm2. There is a detached bow shock in front of the nucleus at
a distance of about 150,000 km. For increasing values ofIt is well known from measurements at comet Halley

that various processes are effective which scatter the pitch tiso the shock moves farther out. It has been shown by
Biermann et al. [1] that the shock distance is approximatelyangle and so isotropize the plasma [16]. We take this into
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FIG. 8. Cut perpendicular to the tail at a distance 393,000 km behind the nucleus for tiso 5 1 s. The length scale is in 100,000 km. The orientation
of the interplanetary magnetic field is horizontal: (a) ion density (cm23); (b) velocity (km/s); (c) magnetic field (1025 Gs); (d) mass flux ruz (10215

g/s cm2).

and the field caught in the stagnation region expands in
Rs P (c2 2 1)

smCG
4fwr(u(

, (6.4) the tail into two flux ropes of opposite polarity.
The perpendicular pressure in the stagnation region is

larger by a factor of 2 in the anisotropic models. Since an
where r(u( is the mass flux of the solar wind. In this anisotropic pressure helps to expand the compressed field
formula the c depends on the degrees of freedom to which in the direction perpendicular to the field, there is less field
the heat generated by the ion pickup is distributed. For compression necessary to organize the transport of the
isotropic pressure there are three degrees of freedom and field. Therefore, the magnetic field in the pileup region
c 5 Gd. But for anisotropic pressure only the perpendicular and in the flux tubes in the tail becomes smaller with
pressure is heated. This gives only two degrees of freedom increasing tiso . The increase in p' compensates nearly the
and c 5 2. reduction in magnetic pressure.

Equations (2.1) to (2.7) are not in conservative form. Mass density and number density of the ions in the tail
We have preferred the pressure equation (2.4) over the depend only a little on the degree of isotropization.
energy equation (2.11) since we intend to generalize the Figures 8 and 9 show the state in the far tail at a distance
approach to a multi-ion plasma, where it is even harder of 393,000 km behind the nucleus for the isotropic (tiso 5
to get energy equations in conservative form. Nevertheless, 1) and for an anisotropic case (tiso 5 1800). Most conspicu-
we get a well-developed bow shock. But a closer inspection ous is the reduction of the magnetic field in the anisotropic
shows that, compared with previous MHD calculations or models. Already for isotropic plasma the main mass flow
with the estimate (6.4), the shock is a little too close to in the tail is in a plane perpendicular to the field. The
the nucleus. Lorentz forces are most efficient in this direction. There-

The magnetic field is piled up in the stagnation region fore, velocity and density are highest in the perpendicular
in front of the nucleus until it becomes strong enough to plane. The tail is flattened in this direction.

Pressure anisotropy diverts the mass flux even moredivert the flow in such a way that the field is transported
around the nucleus. The field is draped around the nucleus from the plane parallel to the field into the regions outside.
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FIG. 9. The same as Fig. 8 but for tiso 5 1800 s.

The density is changed only a little. The changed mass flux ized only gradually by various processes. Numerical simula-
tions for the interaction of the solar wind with a cometis mainly due to a change in velocity. In fact, the speed is

reduced in the parallel plane, but accelerated in the region show that pressure anisotropy shifts the bow shock, reduces
the magnetic field in the stagnation region and in the tail,far outside this plane.

Due to the reduced magnetic field the magnetic pressure and accelerates the flow in the plane perpendicular to the
interplanetary field.on the tail is relaxed. Therefore, the tail becomes slightly

less flattened.
REFERENCES

7. CONCLUSION
1. L. Biermann, B. Brosowski, and H. U. Schmidt, The interaction of

the solar wind with a comet, Solar Phys. 1, 254 (1967).We have developed an upstream differencing method
2. J. U. Brackbill and D. C. Barnes, The effect of nonzero = ? B onfor the double-adiabatic equations. The numerical scheme

the numerical solution of the magnetohydrodynamic equations, J.uses an approximate Riemann solver which is based on an
Comput. Phys. 35, 426 (1980).

explicit representation of the complete eigensystem of the
3. M. Brio and C. C. Wu, An upwind differencing scheme for the equa-

Jacobian matrix of the flux vector. tions of ideal magnetohydrodynamics, J. Comput. Phys. 75, 400
The method has to be adapted in such a way that it can (1988).

also cope with complex eigenvalues and eigenvectors which 4. G. F. Chew, M. L. Goldberger, and F. E. Low, The Boltzmann
equation and the one-fluid hydromagnetic equations in the absenceoccur if the flow is unstable with respect to the firehose
of particle collisions, Proc. Roy. Soc. A 236, 112 (1956).or mirror instability. A method is proposed to turn off

5. R. Courant, E. Isaacson, and M. Rees, On the solution of nonlinearthe instabilities. This ‘‘instability correction’’ works well
hyperbolic differential equations by finite differences, Commun. Purein one-dimensional, but not in three-dimensional, test cal-
Appl. Math. 5, 243 (1952).

culations. It turns out that instabilities in general grow but
6. W. Dai and P. R. Woodward, An approximate Riemann solver for

finally isotropize the pressure and so stabilize the flow. ideal magnetohydrodynamics, J. Comput. Phys. 111, 354 (1994).
Pressure anisotropies play an important role in the 7. W. Dai and P. R. Woodward, Extension of the piecewise parabolic

plasma flow in a comet since the cometary ions at first only method to multidimensional ideal magnetohydrodynamics, J. Com-
put. Phys. 115, 485 (1994).contribute to the perpendicular pressure which is isotrop-



DOUBLE-ADIABATIC EQUATIONS 215

8. P. R. Garabedian, Partial Differential Equations (Wiley, New 17. N. Panofsky and M. Phillips, Classical Electricity and Magnetism
(Addison–Wesley, Reading, MA, 1962).York, 1964).

18. P. L. Roe, Approximate Riemann solvers, parameter vectors, and9. S. K. Godunov, Finite difference method for numerical computation
difference schemes, J. Comput. Phys. 43, 357 (1981).of discontinuous solutions of the equations of fluid dynamics, Math.

Sb. 47, 271 (1959). 19. D. Ryu and T. W. Jones, Numerical magnetohydrodynamics in astro-
physics: Algorithms and tests for one-dimensional flow, Astrophys.10. T. I. Gombosi, K. G. Powell, and D. L. De Zeeuw, Axisymmetric
J. 442, 228 (1995).modelling of cometary mass loading on an adaptively refined grid:

20. D. Ryu, T. W. Jones, and A. Frank, Numerical magnetohydrodynam-MHD results, J. Geophys. Res. 99, 21,525 (1994).
ics in astrophysics: Algorithm and tests for multidimensional flow,11. M. Hesse and J. Birn, MHD modeling of magnetotail instability for
Astrophys. J. 452, 785 (1995).anisotropic pressure. J. Geophys. Res. 97, 10643 (1992).

21. H. U. Schmidt and R. Wegmann, MHD calculations for cometary
12. A. Jeffrey and T. Taniuti, Non-linear Wave Propagation (Academic

plasmas, Comput. Phys. Commun. 19, 309 (1980).
Press, New York, 1964).

22. H. U. Schmidt and R. Wegmann, Plasma flow and magnetic fields in
13. R. J. LeVeque, Numerical Methods for Conservation Laws (Birk- comets, in Comets, edited by L. L. Wilkening (Univ. of Arizona Press,
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